General instructions for Students: Whatever be the notes provided, everything must be copied in the Maths copy and then do the HOMEWORK in the same copy

IRRATIONAL NUMBERS – A number cannot be expressed in the form  $\frac{a}{b}$ , where a and b are

integers and  $b \neq 0$  and a and b have no common factor except 1 is called an irrational number.

"OR" Non — terminating, non — repeating decimals are called irrational numbers.

- i) 0.01001000100001...... is a non terminating and non repeating decimal and that is irrational.
- ii) If m is a positive integer which is not a perfect square, then  $\sqrt{m}$  is irrational.

$$\sqrt{2}$$
,  $\sqrt{3}$ ,  $\frac{1}{\sqrt{5}}$ ,  $2 + \sqrt{3}$ , etc.

iii) If m is a positive integer which is not a perfect cube, then  $\sqrt[3]{m}$  is irrational.

$$\sqrt[3]{2}$$
,  $\sqrt[3]{3}$ , etc.

- iv)  $\pi$  is a number whose exact value is not  $\frac{22}{7}$ .  $\pi$  has value which is non terminating and non repeating, so  $\pi$  is irrational while  $\frac{22}{7}$  is rational number.
- 1. Prove that  $\sqrt{2}$  is an irrational number.

If possible, let  $\sqrt{2}$  be a rational number, then

$$\sqrt{2} = \frac{a}{b}, \quad b \neq 0$$

Or 
$$2 = \frac{a^2}{b^2}$$
 (squaring both sides)

Or 
$$2b^2 = a^2$$
....(i)

Or 2 divides 
$$a^2$$

2 divides 
$$a$$
 (since 2 is prime)

Let 
$$a = 2c$$
 ......(ii)

From (i) and (ii), 
$$2b^2 = 4c^2$$

Or 
$$b^2 = 2c^2$$

Or 2 divides  $b^2$ 

2 divides b

Thus, 2 is a common factor of a and b (except 1)

Contradiction

Our supposition is wrong

Hence,  $\sqrt{2}$  is an irrational number .

2. Prove that  $7 - 2\sqrt{3}$  is an irrational number.

If possible, let  $7 - 2\sqrt{3}$  be a rational number. Then

$$7-2\sqrt{3}=r$$
 (say)

Or 
$$7 - r = 2\sqrt{3}$$

Or 
$$\frac{7-r}{2} = \sqrt{3}$$

 $\frac{7-r}{2}$  is rational but  $\sqrt{3}$  is an irrational.

Contradiction

Our supposition is wrong

Hence,  $7 - 2\sqrt{3}$  is an irrational number.

**REAL NUMBERS** - The collection of all rational numbers together with all irrational numbers are called real numbers. Which are denoted by R.

## (EVERY REAL NUMBER IS EITHER RATIONAL OR IRRATIONAL NUMBER

## **DECIMAL EXPANSSION OF REAL NUMBERS -**

**CASE I** — When the remainder becomes zero.

$$\frac{13}{50} = 0.26 \qquad \text{Terminating decimal}$$
 CASE II – When the remainder never becomes zero.

$$\frac{10}{3} = 3.333333...$$

 $\frac{10}{3}$  = 3.333333 ... ..... = 3. $\frac{1}{3}$  Non terminating recurring (repeating)

## REMARKS:

All integers positive, zero or negative are terminating decimals.

The decimal expansion of a rational  $\frac{a}{b}$  where a and b are integers,

b > 0, a, b have no Common factor other than 1 is:

Terminating if b can be expressed as  $b = 2^m 5^n$  where m and n are whole numbers.

Non – terminating if b has a prime factor other than 2 or 5

## **HOMEWORK**

EXERCIS -1.2:3, 5 and 7

EXERCIS - 1.3: 1, 3, 8, 12, 15 and 17